Archives du mot-clé natural steak tenderizer

Maserati Quattroporte

Maserati Quattroporte – luksusowy samochód osobowy produkowany przez włoską markę Maserati w latach 1963 – 1969, 1976 – 1990, 1994 – 2001 oraz od 2004 roku. Od 2012 roku produkowana jest szósta generacja pojazdu.

Maserati Quattroporte I (oznaczenie kodowe Tipo AM 07) produkowany był w latach 1963 – 1969.

Pojazd został zaprojektowany przez Pietro Frua, który wzorował się na modelu 5000 GT, który stworzył 2 lata wcześniej.

Do napędu posłużył silnik V8 o pojemności 4.1 litra i mocy 256 KM połączony z 5-biegową skrzynią manualną lub 3-biegowym automatem. Do roku 1966 (gdy wprowadzono poprawki) wyprodukowano 230 egzemplarzy.

W 1966 roku wprowadzono zmodernizowaną wersję 2a Serie. Od 1968 roku oferowano silnik V8 4.7 l (moc 290 KM). Produkcję zakończono w 1969 roku liczbą 772 egzemplarzy (seria 1 i 2).


Maserati Quattroporte II (oznaczenie kodowe Tipo AM 123) zostało po raz pierwszy zaprezentowane podczas targów motoryzacyjnych w Turynie w 1974 roku, kiedy to marka Maserati była własnością francuskiego koncernu Citroën.

Nadwozie zaprojektował Marcello Gandini ze studia Bertone. Samochód zbudowany został na podwoziu Citroëna SM leak free water bottle, wykorzystywał jego silnik, hydropneumatyczne zawieszenie oraz napęd na przednie koła. Niewielki trzylitrowy silnik miał być odpowiedzią na kryzys paliwowy. Niestety napęd nie sprawdził się w ważącym 1,6 tony i mierzącym 5,2 m samochodzie. Podczas Geneva Motor Show w 1975 roku zaprezentowano wersję z silnikiem 3.2 l o mocy około 200 KM.

Gdy w 1974 Citroën zbankrutował, jedynie 6 przedprodukcyjnych egzemplarzy zostało zbudowanych natural steak tenderizer, a kolejne 7 złożono później z części.


Maserati Quattroporte III (oznaczenie kodowe Tipo AM 330) produkowane było w latach 1979 – 1990.

Auto po raz pierwszy zaprezentowano w 1976 roku poprzez dwa studyjne modele zaprojektowane przez Giorgetto Giugiaro – Medici I oraz Medici II zbudowane na platformie Maserati.

W latach 1986 – 1990 wyprodukowano również 55 sztuk luksusowej odmiany Royale z silnikiem wzmocnionym do 300 KM, którego pierwszy egzemplarz trafił do włoskiego prezydenta Sandro Pertiniego.


Maserati Quattroporte IV produkowane było w latach 1994 – 2001.

Nadwozie zaprojektował Marcello Gandini uzyskując niski współczynnik oporu powietrza Cx=0,31. Był to pierwszy model Maserati, w którym zamontowano system ABS oraz poduszki powietrzne.

W porównaniu do wcześniejszych wersji samochód znacznie zmalał. Dotyczyło to również silników. Początkowo montowano 2.0 l biturbo o mocy 280 KM (do 1997). Od 1995 roku dostępne były również jednostki 2.8 l 285 KM z 5-biegową skrzynią manualną lub 4-biegowym automatem. Z końcem 1995 roku pojawił się silnik 3.2 l 336 KM z modelu Shamal

Waterproof Phone Bag

Waterproof Phone Bag

BUY NOW

$12.90
$5.90

.

W 1998 roku zaprezentowano model Quattraporte Evoluzione w wersjach 2800 i 3200 (255–270 km/h). Produkcję modelu zakończono w 2001 roku liczbą ponad 2800 wyprodukowanych sztuk.


Maserati Quattroporte V produkowany był w latach 2004 – 2012. Pojazd po raz pierwszy zaprezentowano podczas targów motoryzacyjnych we Frankfurcie 9 września 2003 roku.

Pojazd został zaprojektowany przez włoskie studio Pininfarina. Auto wyposażone zostało w silnik 4.2 l o mocy 400 KM. Duża masa sprawia, iż przyspieszenie 0–100 km/h zajmuje 5,2 s. Dzięki równemu rozkładowi mas pomiędzy przednią i tylną osią auto dobrze się prowadzi. Taki rozkład uzyskano, cofając silnik za przednią oś, a skrzynię biegów przesuwając do tyłu. Ten rozkład mas na osie, znany z wielu sportowych samochodów, został po raz pierwszy zastosowany w luksusowym sedanie.

W 2008 roku (rocznik 2009) model przeszedł face lifting. Silnik V8 o pojemności 4,2 l i mocy 400 KM zastąpiła jednostka V8 o większej pojemności 4.7 l i mocy podwyższonej do 430 KM. Najbardziej widoczne zmiany zewnętrzne to przednie i tylne reflektory wykonane w technologii LED. Został również zmieniony przedni grill.

Maserati Quattroporte Bellagio z nadwoziem typu kombi powstało w liczbie 4 egzemplarzy.


Maserati Quattroporte VI produkowany jest od listopada 2012 roku. Auto zostało oficjalnie zaprezentowane podczas Międzynarodowych Północnoamerykańskich Targów Motoryzacyjnych w Detroit w styczniu 2013 roku.

Do napędu wykorzystano silniki V6 i V8 opracowane przez Ferrari, jako pierwsza dostępna była jednostka V8 3.8 (3798 cm³) o mocy maksymalnej 530 KM. W pojeździe zastosowana została 8-biegowa automatyczna skrzynia biegów ZF.


Bolivian Navy

The Bolivian Navy (Spanish: Armada Boliviana) is a branch of the Bolivian Armed Forces custom football uniforms. As of 2008, the Bolivian Naval Force had approximately 5 how to tenderize cheap steak,000 personnel. Although Bolivia has been landlocked since the War of the Pacific in 1879, Bolivia established a River and Lake Force (Fuerza Fluvial y Lacustre) in January 1963 under the Ministry of National Defense. It consisted of four boats supplied from the United States and 1,800 personnel recruited largely from the Bolivian Army. The Bolivian Navy was renamed the Bolivian Naval Force (Fuerza Naval Boliviana) in January 1966, but it has since been called the Bolivian Navy (Armada Boliviana) as well. It became a separate branch of the armed forces in 1963. Bolivia has large rivers which are tributaries to the Amazon which are patrolled to prevent smuggling and drug trafficking. Bolivia also maintains a naval presence on Lake Titicaca, the highest navigable lake in the world, across which runs the Peruvian frontier.

Landlocked Bolivia has not reconciled with the loss of its coast to Chile and the Navy exists to keep the hope alive of recovering its coast by cultivating a maritime consciousness. The Bolivian Navy takes part in many parades and government functions, but none more so than the Día Del Mar (Day of the Sea) in which Bolivia, every year, re-vindicates its claim for an unspecified sovereign access to the sea.

Bolivia claims the country had access to the sea at independence in 1825. In the Boundary Treaty of 1866 between Chile and Bolivia the involved parties agreed on a border line that established a sea access for Bolivia recognized by Chile. In the War of the Pacific (1879–1883) Chile defeated Peru and Bolivia and conquered the Bolivian coastal territories. The recovery of its coastline is a matter of honor in Bolivia, influencing many modern-day political actions and trade decisions.

In 2010, Peru granted Bolivia « dock facilities, a free-trade zone and space for economic activities » along with the option to « build a Pacific Coast annex for the Bolivian navy school » in a 99-year deal.

The Navy is organized into ten naval districts with flotilla headquarters in Guaqui, Guayaramerín, Puerto Suárez, Riberalta, and San Pedro de Tiquina and bases in Puerto Busch, Puerto Horquilla, Puerto Villarroel, Trinidad, and Rurrenabaque.

Naval vessels include several dozen boats, a dozen or more of which are for riverine patrol. Seagoing vessels, including the American-made PR-51 Santa Cruz de la Sierra and several other vessels sail the oceans with the Bolivian flag with the granted permission of the « Capitanias Navales » Naval Registration Office. The Libertador Simón Bolívar, a ship acquired from Venezuela, used to sail from its home port in Rosario, Argentina on the River Paraná. In 1993 the Navy was formally renamed the Naval Force (Fuerza Naval) and moved with the Bolivian Army under a single military authority.

Most of the officers attend the Bolivian Naval Academy, graduating with a Bachelor of Science in Military and Naval Science, accredited by the Military University. Many naval officers later go onto to further studies on the undergraduate and graduate level. Argentina’s Naval Military Group in Bolivia advises on naval strategy and tactics. Many Bolivian officers train in ocean sailing on Argentinian seagoing naval ships. The Force has several Special Operations units to address both internal and external threats.

The Naval Force covers the extensive Bolivian inland waterways divided between the following Naval Districts which are named after the basin or region where they operate:

The Marine component of the FNB originated with the creation of the Marine Battalion Almirante Grau in the early 1980s. This force consists of 600 men is based on Tiquina Naval Base on Lake Titicaca. Later changes name to Marine Battalion Independence, based in Chua Cocani (Not to be confused with the Independence RI17 EB). At present this battalion maintains a similar number of troops including paramilitaries. The personnel of this unit are either part of Task Force Blue Devils or are stationed in various naval bases. There are currently seven infantry battalions which are distributed as follows:

The Policía Militar Naval or PMN is a speciality similar to its counterpart to the Army’s Military Police, carrying out operations such as Important Persons Protection (IPP), Physical Security (SEF) natural steak tenderizer, or Patrol Facility (PAT) with additional duties such as Signals or naval protocol. There Naval detachments of PM in all district headquarters and FNB Naval Area. But only have the following units at the Battalion:

The Bolivian Navy has a total of 173 vessels with many stationed on Lake Titicaca:

PATROL:

Other ships:

The Bolivian Naval Force operates two utility aircraft for the use of headquarters.

The Bolivian Naval Force retains about 2,000 naval infantry personnel and marines.

FFV1

FFV1, which stands for « FF video codec 1 », is a lossless intra-frame video codec. It can use either variable length coding or arithmetic coding for entropy coding. The encoder and decoder are part of the free, open-source library libavcodec in the project FFmpeg since June 2003. FFV1 is also included in ffdshow and LAV Filters, which makes the video codec available to Microsoft Windows application that support system-wide codecs over Video for Windows (VfW) or DirectShow. FFV1 is particularly popular for its performance regarding speed and size, compared to other lossless preservation codecs, such as M-JPEG2000. The European Broadcasting Union (EBU) lists FFV1 under the codec-family index « 31 » in their combined list of video codec references.

For long-term preservation of digital video sustainable container formats as well as audio/video codecs are necessary. There is no consensus to date among the archival community as to which file format or codecs should be used for preservation purposes for digital video. The previously proclaimed encodings were Motion JPEG 2000 (lossless) and uncompressed video.

FFV1 has turned out to be a viable addition to that choice and was therefore recently added as a suitable option for preservation encoding. With compression ratios comparable to JPEG 2000 lossless and its lower computing requirements, it is already being used by professional archives as their long-term storage codec. Especially archives where the collections do not feature extensive broadcast materials but rather consist of, oral history-, ethnographic-recordings and the likes, « favored the lossless FFV1 encoding » in communications with the « Federal Agencies Digitization Guidelines Initiative » (FADGI) team.

As of 2015, standardization of FFV1 through the Internet Engineering Task Force (IETF) is work in progress as part of the European PREFORMA Project, as well as implementation of a conformance checker for FFV1/PCM in a Matroska (MKV) container. Details of FFV1’s standardization plan have been prepared by MediaArea (authors of MediaInfo)) as part of their conformance checking tool « Media CONCH ».

It is also listed as a format option for long-term preservation of moving images on sites of the U.S. Library of Congress’, State Records NSW and others. The Society of American Archivists has published a paper in August 2014, suggesting only FFV1 as preservation codec for video.

The Digital Preservation project at the U.S. Library of Congress identified AVI and Matroska as common container formats for FFV1.

The « Österreichische Mediathek » has also developed DVA-Profession a Free Software solution for archive-suitable mass video digitization, mainly using FFV1 as video encoding throughout the whole workflow, without transcoding. Additionally, they have initiated the development of « FFV1.3 » (=version 3 of FFV1) together with Michael Niedermayer (FFmpeg), Peter Bubestinger and Dave Rice.

FFV1.3 contains improvements and new features such as support for multi-threaded encoding/decoding, error resilience and integrity validation by CRC checksums, storing of display aspect ratio (DAR) and field order. It was tested for over 1 year, and officially released stable for production in August 2013.

In August 2016, support for 48bit/16bpc (=bits per component) in RGB was added. Before that, 16bpc in FFV1 were only supported in YCbCr and RGB was limited to 14bpc.

Within the video archiving domain, the interest in FFV1 is increasing, as can be seen in a thread on the AMIA-L mailing list, the PrestoCentre Forum or the Archivematica mailing list. Companies are also picking up FFV1 support. For example, NOA (formerly « NOA Audio Solutions »), announced support for the FFV1 in their product line in July 2013 and KEM-Studiotechnik released a film-scanner with FFV1 output in November 2013 football jersy.

The owner of Flume Productions Inc. (Canada) states in a blog post:

But recently, I’m getting more and more requests for ffmpeg or ffv1 codec. The lossless compression claim is very compelling along with the open source architecture. One could argue that perhaps these files will have a longer shelf life and won’t immediately fade into digital obsolescence.

In an interview for The New York Times magazine about « Tips on Archiving Family History », Bertram Lyons from the U.S. Library of Congress says:

« […] for video, there are many choices when it comes to codecs (the way the bits are encoded/decoded to represent the visual data, e.g., ffv1, H.264, Apple ProRes) […] »

In January 2013, the possible use and adoption of FFV1 as an archiving codec was addressed in the issue of PrestoCentre’s AV Insider magazine:

« FFV1 has many beneficial technical features […], but adoption rates are relatively low compared with alternatives, for example JPEG2000. […] But holding back too long only serves to self-perpetuate the status of FFV1. The adoption by Archivematica and the Austrian Mediathek with their active promotion of FFV1 along with others may start to break this vicious circle. This could lead to a virtuous circle of wider take-up, to shared development, to incorporation into commercial products and a host of other benefits for the community. »

PACKED – the « Centre of Expertise in Digital Heritage » in Belgium, say in an article about video formats for archiving:

« When removing the proprietary codecs from this list, only a few are left. […] This basically leaves heritage institutions that want to use a lossless codec, with only two options: Jpeg2000 and FFV1. »

In 2015, the International Federation of Television Archives (FIAT/IFTA) mentioned FFV1 explicitly in their call-for-presentations for their annual World Conference, asking « Is FFV1 the new JPEG2000 »?. A workshop titled « FFV1 for Preservation » is also featured.

Here is a list of applications known to be able to read and/or write FFV1 video files, either natively or by installing codec packages.

Entries marked with « – » means that they generally only support either encoding or decoding.

The term « built-in » means that the application can handle FFV1 without the necessity to install additional codec packages. Applications that come with FFV1 support out of the box, usually use FFmpeg’s or Libav’s libraries in order to do so.

The list is far from being complete, and will be augmented over time:

FFV1 is not strictly an intra-frame format; despite not using inter-frame prediction, it allows the context model to adapt over multiple frames. This can be useful for compression due to the very large size of the context table, but can be disabled to force the encoder to generate a strictly intra-frame bitstream. As the gained compression seems to decrease with later versions of FFV1 (version 2,3), the use of GOP size greater than « 1 » might disappear in the future.

During progressive scanning of a frame, the difference between a current pixel and its predicted value, judging by neighboring pixels natural steak tenderizer, is sent to the entropy-coding process. The prediction is done as follows:

The third value, « Top + Left – TopLeft », is effectively equivalent to applying the top predictor to the current and the left sample, followed by applying the left predictor to the prediction residual of the top predictor. This method, also known as the gradient, exploits both horizontal and vertical redundancy. So in simple terms the prediction is the median of the top upholstery shaver, left, and gradient prediction methods. For improved performance and simplicity, the edges of the frame are assumed to be zero to avoid special cases. The prediction in encoding and decoding is managed using a ring buffer.

The residuals are coded using either variable-length coding or arithmetic coding. Both options use a very large context model. The « small » context model uses (11*11*11+1)/2=666 contexts based on the neighboring values of (Left-TopLeft), (TopLeft-Top), and (Top-TopRight). The « large » context model uses (11*11*5*5*5+1)/2=7563 contexts based on the same values as before, but also (TopTop – Top) and (LeftLeft-Left), where « TopTop » is the pixel two above the current one vertically, and « LeftLeft » is the pixel two to the left of the current one. In arithmetic coding, each « context » actually has 32 sub-contexts used for various portions of coding each residual, resulting in a grand total of 242,016 contexts for the « large » model. The arithmetic coder of FFV1 is very similar to (and based on) that of H.264.

On April 16 lemon juicer manual, 2006, a commit-message by Michael Niedermayer confirmed that the bitstream of FFV1 (version 1) is frozen:

« ffv1 and ffvhuff havnt changed since a long time and noone proposed any changes within 1 month after my warning so they are officially no longer experimental and we will guarantee decodeability of files encoded with the current ffv1/ffvhuff in the future »

The bitstream of version 1 is frozen and considered stable for production use since April 2006. The remark « experimental » in the source code was overlooked back then and removed in March 2010.

Version 2 was an intermediate version, that was never officially released and should not be used for production purpose.

The bitstream of version 3 is frozen since August 3, 2013. The final commit marking this version as officially released for production usage was on August 26, 2013.

Improvements beyond FFV1.3 are work in progress and being discussed on the IETF « CELLAR » mailing list. Planned are additional support for color-handling, especially non-linear/logarithmic color spaces.

The current authorative documentation was started in April 2012, and stayed in an very basic state until 2015. In 2015, as part of the IETF standardization process, the documentation is now improved and reviewed by the CELLAR working group in close cooperation with Michael Niedermayer.