Archives du mot-clé toothpaste dispenser singapore

Plancton

Selon Hensen (1887), le plancton (du grec ancien πλαγκτός / plagktós, errant, instable) est l’ensemble des organismes vivant dans les eaux douces, saumâtres et salées, le plus souvent en suspension et apparemment passivement : gamètes, larves, animaux inaptes à lutter contre le courant (petits crustacés planctoniques, siphonophores et méduses), végétaux et algues microscopiques. Les organismes planctoniques sont donc définis à partir de leur niche écologique et non selon des critères phylogénétiques ou taxonomiques.

Le plancton est à la base de nombreux réseaux trophiques. Il constitue la principale nourriture des baleines à fanons, des coquillages filtreurs (dont moules, coques, huîtres, etc.), qu’il peut parfois intoxiquer par diverses toxines.

Le phytoplancton constitue à lui seul environ 50 % de la matière organique produite sur la planète Terre, mais il semble en diminution régulière depuis la fin du XXe siècle.

Le zooplancton contribue par ses mouvements verticaux (cycles liés à la lumière et aux saisons) au mélange des couches d’eau. C’est un aspect de la bioturbation qui pourrait avoir été sous-estimé. De tels phénomènes existent également en eau douce (avec le mouvement des populations de daphnies par exemple)..

La définition d’Hensen est perçue comme incomplète car elle n’inclut pas certains êtres. Des scientifiques ont proposé différents termes pour désigner une certaine partie des organismes vivant en milieu aquatique :

Le plancton désignant l’ensemble d’organismes différents, il est incorrect de dire « un plancton » : on devrait préciser de quel organisme (taxon) on parle.

Le plancton est souvent classé selon sa taille, liée au type de filtre utilisé pour le recueillir :

Le nanoplancton et les planctons de tailles inférieures ont seulement été découverts dans les années 1980. Le plus gros organisme planctonique est la méduse Chrysaora. Elle mesure 1 m de diamètre et 6 m de long. Le plancton de grande taille ne renferme que des espèces animales (zooplancton), alors que les espèces végétales (phytoplancton) dominent les plus petites classes de taille.

Malgré la très grande diversité du plancton, certains caractères généraux donnent une physionomie particulière aux organismes planctoniques qui est liée à leur mode de vie en pleine eau. En effet, ce mode de vie requiert des adaptations qui permettent aux organismes 1) d’éviter d’être vus par les prédateurs puisqu’ils sont incapables de se déplacer volontairement sur de grandes distances : ils constituent des proies faciles et 2) de se maintenir dans la colonne d’eau et éviter de couler.

Ces adaptations n’étant parfois pas suffisantes pour éviter de couler, certains organismes les ont complétées par une activité motrice réduite par le biais de cils, flagelles ou de contractions du corps.

La productivité primaire, réalisée par le phytoplancton (algues planctoniques), dépend de la disponibilité en nutriments (azote, phosphore et selon les espèces de phytoplancton silicium), de la température et de la lumière dans l’eau. La productivité secondaire est liée à la biomasse du zooplancton (plancton animal) et à son efficacité de croissance.

La productivité, liée à la biomasse, est plus élevée dans l’eau froide, généralement plus dense et riche en nutriments. Elle est aussi souvent plus forte en milieu côtier soumis aux enrichissement en nutriments des fleuves.

Malgré une augmentation de productivité dans le nord, autour des pôles, et malgré quelques blooms spectaculaires locaux, l’activité planctonique semble en diminution à échelle planétaire de 1999 à 2006.
Le plancton est à la base de nombreux réseaux trophiques.

Le plancton est le premier maillon des chaîne alimentaires marines. Le phytoplancton est mangé par le zooplancton et par une multitude d’organismes marins. Ils seront la proie de petits prédateurs eux-mêmes chassés par de grands prédateurs. Certains gros animaux comme la baleine et le requin pèlerin se nourrissent directement de zooplancton. Dans les eaux douces et plus encore dans les eaux saumâtres, le phytoplancton est une des bases principales des chaînes alimentaires.

Dans les eaux particulièrement turbides, chargées de particules sableuses ou de vases en suspension, des types particuliers de plancton apparaissent, qui colonisent les particules en suspension, permettant une biomasse élevée malgré le fait que la turbidité ne permette pas la pénétration du soleil. Ces eaux sont généralement soumises à une agitation et ou à des courants importants qui les oxygènent.
Un cas particulier est celui du bouchon vaseux des estuaires, qui se meut au rythme des marées et des afflux d’eaux douces. Il sert de nurserie ou de protection et de zone de nourrissage aux alevins de certaines espèces. Il peut aussi concentrer certaines pollutions. La « pluie » ou « neige » que constituent les cadavres ou excréments de zooplanctons qui descendent passivement vers les fonds marins a une grande importance pour l’alimentation des espèces de grands fonds et pour les cycles biogéochimiques.

Certaines espèces planctoniques peuvent produire des toxines puissantes (dont botuliques), lesquelles peuvent être concentrées dans la chaîne alimentaire par les coquillages, organismes filtreurs ou certains poissons. Ces mêmes organismes peuvent aussi et en sus concentrer des toxiques modifiés et/ou bioaccumulés par le plancton tel le mercure méthylé, dont la quantité tend à augmenter régulièrement chez les poissons prédateurs et cétacés, de manière très préoccupante pour la santé des consommateurs humains et des écosystèmes marins.

Dans certaines conditions (apports élevés de nutriments, généralement des matières organiques, nitrates ou phosphates), un « excès » de plancton conduit à une situation d’eutrophisation, voire de dystrophisation, c’est-à-dire de mort ponctuelle ou durable de la plupart des organismes aquatiques. L’ONU a identifié une centaine de zones mortes (Dead zone) dont en mer Baltique. Dans ces zones, l’eutrophisation peut être combinée à d’autres types de pollution ou de perturbation.

Le plancton est à l’origine d’une biomasse considérable, mais aussi d’une nécromasse qui constitue une part importante de certains sédiments (la craie est la nécromasse fossile de plancton marin). La sédimentation de la nécromasse planctonique est un des puits de carbone planétaire, mais aussi une des voies qui a permis la détoxication des océans primitifs trop riches en certains sels, de calcium notamment, pour permettre une vie complexe sur les modèles que nous connaissons.

Le plancton interagit avec le climat local et global. Il intervient dans le cycle du carbone, via la photosynthèse, mais aussi en émettant après sa mort des molécules soufrées qui contribuent à la nucléation des gouttes d’eau, c’est-à-dire à la formation des nuages et des pluies. Le Sulfure de diméthyle est le plus abondant des composés biologiques soufré émis dans l’atmosphère et il l’est essentiellement à partir des océans. Il est dégradé dans l’atmosphère marine ; principalement en dioxyde de soufre toothpaste dispenser singapore, diméthylsulfoxyde (DMSO), acide sulfonique et acide sulfurique qui forme des aérosols dont les molécules se comportent comme des noyaux de condensation de nuages. Le plancton a ainsi une influence sur la formation des nuages, et secondairement sur les apports terrigènes à la mer par le ruissellement (voir article sur le diméthylsulfure).

La biomasse planctonique par litre d’eau est en moyenne bien plus importante dans les eaux froides, même sous la calotte glaciaire waterproof pouch bag, que dans les eaux chaudes tropicales, si elles sont éloignées de sources d’oligoéléments tels que les apports volcaniques des atolls coralliens.
Les phénomènes de remontée d’eau des profondeurs (« upwellings ») et d’endo-upwellings sont à l’origine de la répartition des masses de planctons qui conditionnent les espèces des réseaux trophiques supérieurs. Les modifications climatiques, en affectant les courants marins et la température de l’eau (et donc sa teneur passive en oxygène) pourraient modifier la répartition et la nature des masses de plancton et donc des ressources halieutiques. Des modifications importantes sont observées depuis près d’un siècle, mais la part des impacts de la surpêche et des pollutions (nitrates, pesticides, métaux lourds, turbidité, pollution thermique..) dans ces phénomènes est encore difficile à déterminer.

Le plancton est une des sources principales en oxygène de la planète. Grâce au phytoplancton, l’eau des océans stocke le CO2 dissous dans la couche superficielle et rejette l’oxygène dans l’air. Il est admis qu’un tiers du CO2 produit dans l’atmosphère est absorbé par les mers et les océans grâce au phytoplancton soit autant que tous les végétaux terrestres et les plantes aquatiques, le dernier tiers étant celui qui serait responsable de l’augmentation des gaz à effet de serre dans l’atmosphère. Plus de 150 scientifiques, originaires de 26 pays, ont lancé un appel international pour stopper l’acidification des océans, due à l’absorption en grande quantité de CO2, car elle menace les écosystèmes marins, notamment par la dissolution de nombreux organismes planctoniques à squelettes de calcaire).

Les microfossiles permettent d’étudier comment le plancton a évolué au sein de la biodiversité marine. Ils confirment l’importance des liens entre climat et plancton, et ont montré que lors des grandes Extinction massive, le plancton aussi a été fortement affecté. En particulier, une étude récente qui a comparé le contenu en microfossiles de nanoplanctons de 823 carottes de sédiments marins provenant de 17 forages océaniques faits dans les hémisphères nord et sud. On a constaté qu’à la « limite Crétacé-Tertiaire » (dernière grande crise d’extinctions), ce sont 93 % des espèces de nanoplancton possédant un test calcaire qui ont « subitement » disparu, avec une extinction plus rapide et plus massive dans l’hémisphère nord. Ceci est un indice de plus en faveur de l’hypothèse d’une cause qui serait la chute d’un gros astéroïde au Yucatán, d’autant que les dates sont corrélées avec une extinction massive d’espèces végétales terrestres en Amérique du Nord. À la suite de cet évènement catastrophique, la diversité du nanoplancton est restée dans l’hémisphère nord beaucoup plus faible durant environ 40 000 ans et il lui a fallu près de 270 000 ans pour retrouver son niveau initial. Sa diversité est encore aujourd’hui plus importante dans l’hémisphère sud. Lors de cette extinction, le nanoplancton photosynthétique a aussi été fortement touché, ce qui laisse supposer que l’impact et les incendies ont libéré une grande quantité de métaux toxiques dans l’air et l’océan, qui aurait touché l’hémisphère nord, plus que la moitié sud de la planète. Le cuivre est toxique pour le plancton à très faible dose (quelques parties par milliard), mais du nickel, du cadmium et fer ont sans doute aussi été libérés en grande quantité, ainsi peut-être que du chrome, de l’aluminium et surtout du mercure et du plomb dont les effets toxiques, presque universels sont bien connus.

Le taux de phytoplancton présent en surface dans les mers est suivi à grande échelle, par satellite depuis 1979. Il subit des fluctuations cycliques, à échelle décennale, a priori liée au forçage radiatif. La durée de l’observation est encore très insuffisante pour prédire des tendances à long terme, mais la modélisation et l’étude du paléoclimat peuvent aider à mieux comprendre les liens entre plancton et climat.

En 2006, Michael Behrenfeld (Université d’État de l’Oregon) montre dans la revue Nature (7 décembre 2006) comment l’imagerie satellitale permet d’évaluer la quantité de chlorophylle dans l’eau, et que 60 % environ des mers de 1998 à 1999 ont eu un niveau d’activité planctonique très bas, en raison du phénomène El Niño, avant de récupérer avec La Niña puis de chuter régulièrement : de 1999 à 2005 (durant 6 ans). L’activité planctonique semble régulièrement diminuer, l’océan perdant – en moyenne, et chaque année – une capacité d’absorption de 190 millions de tonnes (Mt) de carbone par rapport à l’année précédente. Si cette tendance devait être confirmée dans les années à venir, le réchauffement climatique pourrait être accéléré. Ce sont en effet environ 695 Mt de CO2, soit plus que le total des émissions annuelles de la France, qui n’ont pas – en 6 ans – été absorbées dans les zones tropicales et équatoriales, à la suite du recul de l’activité planctonique.

Scott Doney, également dans la revue Nature, précise que, dans le même temps, la productivité a augmenté aux hautes latitudes en raison du réchauffement des eaux de surface, mais sans pouvoir compenser le déficit de la zone tropicale, le gain de productivité étant limité et concernant un volume d’eau très inférieur.

Il faut ajouter cet effet à ceux de l’acidification des océans, à ceux de leur surexploitation dont les impacts sont mal compris, à ceux du blanchiment ou de la mort des coraux, et à ceux de l’eutrophisation et de la turbidité anormale des estuaires et de vastes zones marines. Le plancton marin pourrait être mis à mal avant 2050, voire avant 2030 dans l’océan Austral. En mer du Nord, depuis 1961, la part du plancton d’eau chaude ne cesse de croître par rapport à celle du plancton d’eau froide. De plus, l’acidification a un impact sur les enveloppes calcaires du plancton, comme celles de certains protistes, de mollusques et de crustacés.

Le réchauffement est une des menaces possibles, la plus souvent citée, avant l’acidification ou la pollution. Il agit de plusieurs manières  :

Des régressions importantes de phytoplancton semblent être déjà survenues, notamment il y a environ 55 millions d’années, à une période justement caractérisée par une augmentation des taux de gaz à effet de serre (de cause inconnue).

Le plancton est traditionnellement prélevé à partir de filets appelés filets à plancton. Ces filets sont constitués d’un grand cercle métallique sur lequel est attachée une toile de nylon ou de soie de forme conique qui se termine par un récipient appelé collecteur. Il existe plusieurs modèles de toiles avec différentes tailles de mailles. La taille des mailles est sélectionnée en fonction de la taille des organismes que l’on souhaite récolter : elle est toujours inférieure à la taille des organismes visés. Le filet est descendu dans l’eau à l’aide d’un câble. La longueur de câble déployée permet de savoir à quelle profondeur maximale le filet est envoyé. Lorsque le filet est tiré par le câble, l’eau passe à travers les mailles du filet qui laissent échapper l’eau et tous les organismes qui ont une taille plus petite que les mailles du filet tandis que les plus gros s’accumulent dans le collecteur. L’entrée des filets est généralement munie d’une petite hélice appelée volucompteur qui permet de déterminer la quantité d’eau qui pénètre dans le filet. Une fois le filet remonté, le collecteur est démonté et son contenu est récupéré dans un récipient afin d’être étudié.

Les études quantitatives précises utilisent des bouteilles de prélèvement.

Le filet à plancton peut être utilisé de plusieurs façons. Si le bateau est à l’arrêt, le filet peut être remonté verticalement. La collecte donnera alors des informations sur la répartition verticale des espèces dans la colonne d’eau. Si le bateau est en mouvement, la collecte se fera horizontalement à une profondeur donnée et donnera des informations sur la répartition des espèces à cette profondeur. Dans ce cas, un filet muni d’un système de fermeture sera utilisé pour ne pas polluer la récolte au moment de la remontée du filet. Ces méthodes de collecte du plancton permettent de filtrer de grandes quantités d’eau ce qui permet d’effectuer des études dans différents types d’eaux y compris dans des zones pauvres en plancton. Elles sont cependant peu précises pour l’étude quantitative du plancton. En effet, même en utilisant un volucompteur, il reste difficile d’estimer précisément la quantité d’eau filtrée par le filet et comme le filet est traîné grâce à des câbles, il n’est pas facile d’effectuer des prélèvements à une profondeur exacte et constante. Cette méthode de collecte est donc généralement utilisée pour l’étude qualitative des espèces c’est-à-dire pour obtenir des informations sur la présence ou l’absence de telle ou telle espèce.

Il existe plusieurs modèles de bouteilles. Les plus courantes sont les bouteilles Niskin. Ces bouteilles permettent de prélever un volume d’eau connu à une profondeur précise. La bouteille est un cylindre en plastique muni à chaque extrémité de deux clapets qui servent de bouchons. La bouteille est attachée sur un câble et les clapets sont maintenus ouverts soit par un système de ressort ou par une corde élastique en fonction des modèles. Elle est descendue dans l’eau avec les deux clapets ouverts. La longueur du câble déployée permet d’estimer la profondeur atteinte par la bouteille. Arrivée à la profondeur que l’on souhaite échantillonner, la bouteille est refermée à l’aide d’un petit poids appelé messager que l’on fait glisser le long du câble et qui va libérer les deux clapets de la bouteille. L’eau et le plancton qu’elle contient sont ainsi emprisonnés dans la bouteille étanche qui peut être remontée à la surface pour être vidée. Les bouteilles les plus récentes utilisent des électrovalves qui peuvent être actionnées à une profondeur prédéfinie grâce à un détecteur de pression ou à l’aide d’un signal électrique envoyé par l’utilisateur depuis la surface. La bouteille peut être utilisée seule ou couplée à d’autres bouteilles pour échantillonner simultanément à plusieurs profondeurs. Des supports métalliques appelés rosettes permettent de fixer ensemble jusqu’à 36 bouteilles de prélèvement et de déclencher la fermeture de chaque bouteille à différentes profondeurs. Il est ainsi possible d’échantillonner les différentes couches de la colonne d’eau et d’obtenir une répartition précise du plancton sur la verticale.

Les formes parfois très géométriques et volontiers complexes de nombreux types d’organismes planctoniques ont fasciné les scientifiques à leur découverte, entre le XVIIIe et le XIXe siècle. Leur beauté et leur diversité furent popularisées auprès du grand public en 1904 par le best-seller du biologiste et dessinateur naturaliste Ernst Haeckel, intitulé « Formes artistiques de la nature » (Kunstformen der Natur). Cet ouvrage eut un impact extrêmement important sur le courant de l’Art nouveau du début du XXe siècle, et notamment sur des artistes comme Constant Roux ou encore René Binet, auteur de la porte monumentale de l’exposition universelle de Paris en 1900.

Planche des « Thalamphora » d’Ernst Haeckel (1904).

Planche des « Phaeodaria » (ibid)

Planche des « Cyrtoidea »

Planche des « Acanthophracta »

Planche des « Phaeodaria »

Planche des « Stephoidea »

Planche des « Diatomea »

Planche des « Spumellaria »

La porte monumentale de l’Exposition universelle de Paris (1900) conçue par René Binet et ouvertement inspirée des dessins d’Haeckel.

Sur les autres projets Wikimedia :

Kreis Hajdúszoboszló

Hajdúszoboszló (ungarisch Hajdúszoboszlói járás) ist ein Kreis im Westen des ostungarischen Komitats Hajdú-Bihar. Seine Nachbarkreise sind (im Uhrzeiger Sinn im Norden beginnend) Balmazújváros, Debrecen, Derecske und Püspökladány. Im Westen bildet das Komitat Jász-Nagykun-Szolnok die Grenze.

Der Kreis entstand im Zuge der ungarischen Verwaltungsreform Anfang 2013 aus allen vier Gemeinden des gleichnamigen Kleingebiets (ungarisch Hajdúszoboszlói kistérség) necklaces for women, das noch um eine Gemeinde aus dem Kleingebiet Püspökladány (ungarisch Püspökladányi kistérség) erweitert wurde wholesale underwear.

Der Kreis Hajdúszoboszló hat eine durchschnittliche Gemeindegröße von 8.523 Einwohnern auf einer Fläche von 146,51 Quadratkilometern. Die Bevölkerungsdichte des drittgrößten Kreises liegt unter dem Wert des gesamten Komitats. Der Verwaltungssitz befindet sich in der größten Stadt most popular water bottles, Hajdúszoboszló.

PDF- und XLS-Dateien:
Volkszählung 2011:
2013: ; 2016:

Balmazújváros | Berettyóújfalu | Debrecen | Derecske&nbsp toothpaste dispenser singapore;| Hajdúböszörmény | Hajdúhadház | Hajdúnánás | Hajdúszoboszló | Nyíradony | Püspökladány